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MODELS AND WHY THEY MATTER

Models are a vital tool for both the chemical industry specifically 

and the engineering sciences as a whole. In essence, they’re 

mathematical representations of the relationships between 

variables in (real) systems, which describe and help operators 

understand the behavior of a plant or a process.

They come in different shapes and sizes. They’re built using 

various approaches and techniques. They offer different capa-

bilities and benefits. And, of course, they have their own limi-

tations, too. So it’s important to understand these differences 

in order to build and use models that will provide the greatest 

operational advantage.

So what are the types most commonly used in chemical process 

engineering? And what are their advantages and disadvantages 

in answering key questions such as where and how to optimize? 

Contrasting approaches

One feature that distinguishes different model types is the 

level of knowledge about the underlying physical or chemical 

phenomena in the chemical process needed to develop them.

There are many contrasting criteria: linear vs non-linear, discrete 

vs continuous, static vs dynamic, explicit vs implicit, and deter-

ministic vs probabilistic. More specifically – and at opposing 

ends of the spectrum – there are first principle and empirical 

models.

First principle or ‘knowledge-based’ models start from the basis 

of established science, are generally accepted and have been 

extensively verified. They use explicit, recognized correlations 

in science and engineering, including chemical engineering. A 

well-known example is the Arrhenius equation, which describes 

the temperature dependence of different reaction rates.

In contrast, empirical models are based purely on arbitrary 

mathematical correlations. These describe relationships in the 

available data from any observed process or dataset.

In principle, the results of these approaches could be compared 

with measurements such as flow, composition, temperature, 

pressure, and other variables to paint a real picture of a plant’s 

behavior. Collecting such measurements is a whole other chal-

lenge, of course.

Let’s look at each model type in some more detail.

FIRST PRINCIPLE MODELS: 
PUTTING KNOWLEDGE TO WORK

First principle models are built on a fundamental understanding 

of underlying ‘ab initio’ physio-chemical phenomena such as 

mass transfer, heat transfer and mass flow. Often, they’re also 

based on the explicit relationships in a particular unit operation 

within a chemical process. And they can be used to connect 

different unit operations by mass and heat balance in a process 

flowsheet.

First principle modelling has been used extensively to help 

design new plants. In many cases, a flow-sheet model combining 

first principles with correlations such as heat transfer, porosity 

and vapor pressure can be constructed to describe the full 

extent of the plant. But this can take many years (even decades) 

of work, lots of resources and substantial investment.

These models are often also the starting point for revamping 

plants, debottlenecking, or supporting and optimizing day-to-day 

process operations. Here, though, observed ‘real world’ data 

is often needed to “fill in the blanks” where parameters are 

unknown or missing.

The need for knowledge

First principle models depend on a lot of information, from the 

properties of chemicals and mixtures involved in a process to 

data about reactions (such as kinetics) and thermodynamics.

They also need a comprehensive, real-world knowledge of the 

underlying correlations, which demands expertise from different 

disciplines, including equipment manufacturers, process licen-

sors and catalyst suppliers, to accurately describe a chemical 

operation.

Some of the information required can be found in readily 

available chemical engineering literature. Other, more specific 

data must be gathered from experiments designed with the 

particular process to be described in mind. This presents a 

challenge, though.

In real industrial scenarios, observed behavior can deviate 

markedly from the typical correlations we might expect to see 

(for instance, where chemical mixtures form azeotropes). The 

reason for this is that our understanding of certain phenomena – 

such as non-ideal mixtures, or heat and mass transfer in porous 

systems – is limited.
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As a result, the chemical engineer’s traditional workaround has 

been to rely on dimensionless number approaches, such as tabu-

lated heat-transfer correlations or vapor-liquid equilibria (cf. VDI 

Wärmeatlas, Dechema Datenbank). And the workarounds don’t 

stop there.

The problem with parameters

All first principle models rely on adequate parameters, applicable 

to the specific process they’re describing or the problem they 

exist to solve. Getting them is easier said than done.

One of the big challenges in accessing the information needed 

is that, in looking beyond base effects to the secondary effects 

that also influence the chemical process, accessibility through 

(direct) measurements decreases as the complexity and number 

of parameters involved increases.

How accessibility of information decreases the greater the 

complexity and number of parameters in a chemical process

Accurately modelling real-world problems from the bottom up 

can get complicated quickly, as accessing the right measured 

parameters gets more and more challenging.

Despite decades of research to try to close these gaps, uncer-

tainty remains and phenomena observed in real-world industrial 

systems still cannot be sufficiently described. It’s easy to end up 

with thousands of model equations, often coupled with partial 

differential equations, that cannot be solved analytically. In 

many cases even solving them numerically is a major challenge. 

So “fiddle factors” have come into play.

These are parameters used to fit model outputs to the observed 

data, or to design and safety margins in a plant’s design. 

Essentially, they compensate for unknowns or uncertainties 

in the models and, arguably, inadequacies in the first principle 

approach as a whole. But such approximations can leave signif-

icant inaccuracies in the final result, meaning all effects cannot 

be confidently captured to their full extent.

In search of an easier answer

We should note that pretty much anything can be modelled in 

this way, and deliver a number of reasonable qualities, if enough 

time, budget and energy is invested in doing so. But, with its 

reliance on engineering handbooks, the validity of the first 

principle approach will always be limited.

Knowledge-based models need to deliver on several fronts 

if they’re to help design new plants, revamp old ones, reduce 

bottlenecks or drive process efficiency. They must have ample 

scope for extrapolation. Provide a smooth, continuous, and 

differentiable foundation for optimization. And, in environments 

where major changes in processes, equipment and catalysts are 

likely, they must adapt easily and be constantly reviewed to 

keep them up to date.

Is all of the traditional effort of first principle really needed 

in order to optimize a chemical process? After all, an existing 

plant is defined by properties such as its installed equipment or 

catalysts. And its behavior can be described by data measured 

within it.

As such, the extrapolation capabilities usually needed to design 

a new plant wouldn’t be required to model or describe the 

process, at least within the scope of existing data. And surely 

data captured from the process is the asset that offers the 

greatest scope to learn what’s needed to optimize?

Let’s now look at the other extreme: empirical models.

Accurately modelling real-world problems from the bottom up can get complicated quickly, as accessing the right measured parameters gets more and more challenging.
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EMPIRICAL MODELS: WHERE 
DATA SPEAKS

Pure statistical models are used to describe observed data and 

behavior by using arbitrary functions to find a good fit between 

the output of the model and the observations. These models 

can be applied even when little to no physical or chemical engi-

neering understanding is available. But caution is needed.

One characteristic of chemical processes is the very complex 

interplay between variables and influencing factors. Some, 

such as feed flows and reactor temperature, can be controlled 

directly or indirectly. Other outside factors, such as ambient 

humidity and temperature, can influence the process but not be 

influenced themselves.

By looking only into the data from a chemical plant, without 

applying any domain knowledge to what you’re seeing, it’s all 

too easy to draw incorrect conclusions based on what’s known 

as ‘spurious correlations.’ This is where at least two events or 

variables show the same or a similar trend, even though there’s 

no likely link (or ‘causal relationship’) between them. It might be 

due to pure coincidence. Or it could be the result of a third, 

unseen factor.

A good example comes when comparing the age of Miss America 

winners with murders carried out using steam, hot vapors, and 

hot objects over a 10-year period. It may sound ridiculous – and 

it is – but it’s just one of several extreme but hilarious illustra-

tions gathered by Tyler Vigen in his Spurious Correlations series.

Finding ‘Spurious Correlations’ by comparing Miss America’s age 

with murders by steam, hot vapours and hot objects

Statistical shortcomings

The point this serves is to show datasets alone don’t necessarily 

reveal if relationships between trends are due to plausible 

correlations, let alone give indications on the cause-and-effect 

reasoning.

To make things trickier, in chemical processes residence time 

plays an important role too. Between input (let’s say a feed flow) 

and output (e.g. a product flow), a certain time lag exists. If the 

flow of feed in the inlet is changed it could be hours before the 

product flow sees a corresponding change. This may be because 

of hold-up in the plant, slow equilibration of chemical reactions, 

temperatures and so on. Without specific domain and process 

knowledge, this also makes finding relationships between trends 

more challenging.

Relying on statistical parameters alone can be very misleading. 

They may look right yet not accurately capture basic relation-

ships – a phenomenon explored well by both Anscombe’s 

quartet and the Datasaurus 

Dozen. What’s more, there’s 

no escaping the fact that 

getting statistics right 

demands huge volumes of 

data. The less you know, the 

more of it you need.

So while statistical models 

have their uses, they don’t 

reflect long-standing 

chemical engineering 

knowledge, may actively 

contradict or misdirect, 

and can’t keep up with 

the reality of operating a 

chemical process. Draw-

backs that a number of chemical producers using them have 

reported, and which can’t be resolved by applying advanced 

analytics or machine learning techniques, even with large sets 

of data.

Fortunately, there is another way…

Look carefully at your data before drawing conclusions. Correlations might be pure coincidence. 

Source: Tyler Vigen, Spurious Correlations (data sources: Wikipedia; Centers for Disease Control & Prevention). Used here with thanks.
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HYBRID MODELS: THE BEST OF 
BOTH WORLDS

Some of the disadvantages and limitations of the first prin-

ciple approach and empirical models we’ve discussed can be 

overcome using hybrid models instead.

These come in various shapes and sizes too. What they have in 

common is they still rely on first principle domain knowledge 

to one degree or another, and combine that with statistical 

methods where the knowledge needed is lacking or doesn’t 

sufficiently describe reality.

They combine the best of both approaches, while also bringing 

fresh benefits of their own to the table. And they’re not a new 

concept.

The use of data-driven neural networks and hybrid models 

to dynamically model chemical reaction systems was being 

described 20 years ago1. Using them successfully, though, 

is more of a skill. It’s important to identify upfront the hybrid 

models genuinely capable of delivering the goals they’re 

designed to achieve – such as process optimization. (And, of 

course, know their own limitations.)

In today’s chemical plant operations, optimization is guided 

mostly by operators’ and engineers’ knowledge and experience. 

If time and budget permit, this may also be complemented by 

basic and periodic analysis of whatever data is available.

What if you could optimize on a continuous and ongoing basis 

without investing such time and resources? You can. Digitaliza-

tion and the latest technologies are already offering chemical 

producers the scope to make great advances in this area.

We make models do more

Navigance takes a fresh approach to find untapped potential 

in your chemical processes. We’ve developed next-generation 

hybrid process models that can adapt easily to your plant’s 

historic and real-time data, to generate reliable, prescriptive 

advice that helps you continuously optimize your operations.

How do these hybrid models compare to their first principle 

counterparts? They still use established first principle tech-

niques, physico-chemical relationships and engineering princi-

ples as a basis. This ensures, for example, that the mass balance 

is closed and cause-effect relationships in the chemical process, 

such a residence times, are correctly captured.

As a starting point, we use a process-specific base model 

constructed using chemical engineering know-how. Then we 

review your plant, its setup, your available sensors and meas-

urements, and any operational constraints. And we identify the 

relevant process data to measure and optimize performance.

It’s this process data that brings our hybrid process models to 

life. By carefully integrating unknowns using arbitrary functions 

derived from the data, our models ensure a good fit for all data 

they observe.

We take great care to make sure all relevant effects in your plant 

are captured and considered, then apply advanced machine 

learning techniques. This creates AI-enhanced, data-driven, 

hybrid process models that, in contrast to rigid and inflexible 

first principle models, can learn intuitively and adapt quickly to 

changing conditions.

Using intelligent algorithms to consider all data observed from 

a continuous stream, they generate invaluable insights. So 

you can respond quickly to a host of factors that might affect 

your processes – from varying load scenarios to deactivating 

catalysts.

All this means you can act quickly and with confidence on real-

time recommendations for process control variables to reach 

your optimization goals and most pressing KPIs.
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IT’S TIME TO OPTIMIZE  
YOUR OPERATION.

We already have a Navigance base solution that’s ready to go. 

It works with any technology license and catalyst. And we can’t 

wait to show what it could mean for you.  

So let’s talk about your plant’s setup and needs and tailor it to 

suit. 
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